Fig. 1. Inductance of a coil wound on a threaded Bi core as a function of ram pressure at room temperature. Lead inductance was 0.5800 μH. Fig. 2. Compression curve of Bi at 25°C. The compression curve of Bi to 60 kbar at 25°C is shown in Fig. 2 which also shows Bridgman's results for comparison. The data is tabulated at 5 kbar increments in Table 1. These results are Table 1. Compression of Bismuth at 25°C.* The listed values are the means and standard deviations for eight experiments | P
(kbars) | $-(\Delta V/V_0)$ % | P (kbars) | $-(\Delta V/V_0)$ % | |--------------|---------------------|-----------|---------------------| | 0 | 0 | 35 | 17·2 ± 0·8 | | 5 | 1.5 | 40 | 17.8 ± 0.9 | | 10 | 2.8 | 45 | 18.3 ± 0.9 | | 15 | 4.1 | 50 | 18.9 ± 0.9 | | 20 | 5.3 | 55 | 19.4 ± 1.0 | | 25 | 6.3 | 60 | 19·9 ± 1·0 | | 30 | 16.7 ± 0.8 | | | * Matched with Bridgman's⁽²⁾ data up to 20 kbar. † (i) Transition at 25.4 kbar; compressions -6.4% to $-(12\cdot2\pm0.4)\%$; (ii) Transition at 26.8 kbar; compressions $-(12\cdot4\pm0.5)\%$ to $-(16\cdot0\pm0.8)\%$. based on eight runs for which the experimental set-ups differed among each other in some respect, such as sample size, pressed powder vs. cast samples, thickness of silver chloride jacket (when used), and whether or not a thin pyrophyllite sleeve was placed on the coil before enclosing it in silver chloride. On completely identical set-ups the reproducibility was better than $\pm 2\%$ of the vol. changes themselves. The over-all results are in fairly good agreement with Bridgman's data. The most significant differences occur in the region of the transitions. The Bi_{I-II} and Bi_{II-III} transitions occur so close together in pressure that it was beyond the resolving powers of Bridgman's 50 kbar⁽¹⁾ and 100 kbar⁽²⁾ apparatus to separate them. In carlier lower pressure work, however, he reported the vol. changes at the two transitions separately.⁽⁹⁾ Table 2 compares the results and also includes LaMori's⁽¹⁰⁾ data obtained by the piston displacement technique. The ratios of the sudden vol. changes I-II: II-III varied between 1.41:1.0 and 1.60:1.0 for the various runs. By way of comparison BRIDG-MAN's data⁽⁹⁾ yielded a ratio of 1.53:1.0 and that of LaMori 1.33:1.0. It is not clear why there should be such a large scatter in this ratio. In his resistance work, BRIDGMAN⁽³⁾ also observed a wide variation in the ratio of the resistance changes